

REM2011

"Hands on Hybrids" Practical Education at the University of Applied Sciences Bochum

M.Hellwig, K.Skolik, S.Rohkämper

Table of content

- Introduction
- Toyota Prius
- Measurement system
- Practical training for students
- Post processing of recorded data
- Summary
- Future

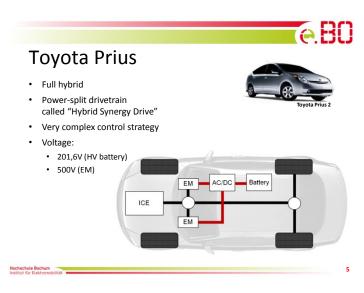
ochschule Bochum

e.BO

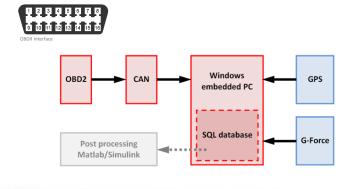
Introduction

- New components and drivetrains in education
- Many types of drivetrains are possible:
 - Fully electrical
 - Micro hybrid
 - Mild hybrid
 - Full hybrid
- Complex control strategy is needed

e.BO


Introduction

	Micro Hybrid	Mild Hybrid	Full Hybrid
Voltage level	12V	<200V	<1000V
Functions	Auto-Start-Stop	Auto-Start-Stop Boost Regenerative braking	Auto-Start-Stop Boost Regenerative Braking Full electric driving
Example	BMW 1er	Honda Insight	Toyota Prius


Hochschule Bochum

stitut für Elektrom

e.BO

Measurement System

e.BO

Measurement System

Practical Training for the Students

- The described hardware will be used for lessons at the Bochum University
 of Applied Sciences
- Each course is divided into three parts
 - Theoretical lessons
 - A test drive
 - Post processing of the acquired data

e.BO

Practical Training for the Students

Theoretical lessons

- Drivetrain basics
- · Limits of the components
 - · Maximum battery current
 - Maximum revolution of the EM
- · Car specific parameter
 - Maximum full electric speed
 - Usable SOC

Practical Training for the Students

Theoretical lessons

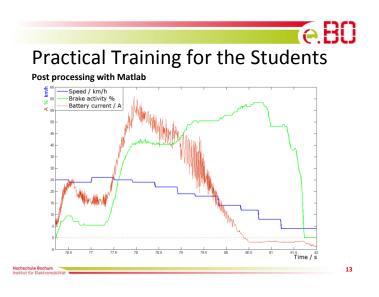
- Drive cycle
 - Created by students in smaller groups
 - · Should cover all possible interactions of the drivetrain components
 - Could be designed to get a deeper view into the drivetrain operations or to compare several hybrid electric vehicles against each other on a defined drive cycle
- The students have to estimate the relevant parameters to be stored in the database and set up the measuring system accordingly

e.BO

Practical Training for the Students

Test drive

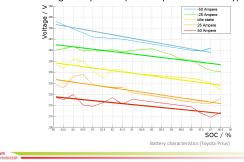
- Each cycle should be driven several times
- Pedal positions must be tracked in every case
- Should be done by different team members



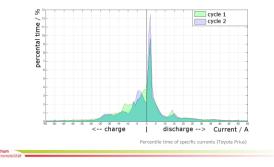
Practical Training for the Students

Post processing

- · The students analyze the recorded data with Matlab
- Getting experience in Matlab is another advantage of the described way of studying
- The raw data from the MySQL database must be transformed into useful values and units by the students
- Filters should be applied to minimize noise


10

Post processing


 Different data sets can be combined to characterize single components (for example the HV-battery)

Practical Training for the Students

Post processing

 Different data sets can be combined to get information about the stress on several drivetrain components

- The students have the opportunity to get their "hands on hybrids"
- The students can fully understand the complexity of hybrid electric vehicles
- The students get used to the engineering workflow

15

14

Thank you!

18